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Two notes on the interpretation of the magnetocrystalline anisotropy energy are given. First, methods to
define atom-resolved contributions to the magnetocrystalline anisotropy energy of compounds are scrutinized.
Second, a method concerning bond-resolved contributions is introduced which is able to test Kittel’s famous
interpretation of the magnetocrystalline anisotropy energy.
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I. INTRODUCTION

The magnetocrystalline anisotropy energy is a key quan-
tity for the technological application of magnetic materials.
A more fundamental understanding of this material param-
eter would be very helpful to find guidelines for the design of
devices with special properties, especially for nanostructured
and multicomponent systems. In the present Brief Report we
want to give a contribution in this direction. In Sec. II we
will comment on the attempts to define atom-resolved con-
tributions to the magnetocrystalline anisotropy energy. There
are numerous situations for which such a decomposition of
the magnetocrystalline anisotropy energy of the whole sys-
tem into contributions of individual atoms would be helpful.
For instance, it has been found in recent years that the mag-
netic properties of ferromagnetic metal films1 or
nanoparticles2 may be modified by applying an electric field
or by electrolytically charging the system. By means of
atom-resolved contributions it is possible to separate the
modifications of the surface and bulk anisotropy and, thus, to
supplement already existing more phenomenological fitting
procedures.3 In addition, it is possible to separate the effects
on various types of atoms in multicomponent systems. The
magnetic anisotropy is a relativistic effect resulting from the
spin-orbit coupling, and in detail it is influenced by hybrid-
ization effects �see Sec. III�, chemical order, structural relax-
ation, etc.4 Therefore, the atom-resolved contributions are
meaningful just for the specific system under consideration.
It is of course not possible to define a contribution of a given
atom which could be used as an intrinsic property of that
atom in different surroundings. In Sec. III, we define bond-
resolved contributions to the magnetocrystalline anisotropy
energy which can be used to test Kittel’s famous interpreta-
tion of that energy.

II. ATOM-RESOLVED CONTRIBUTIONS TO THE
MAGNETOCRYSTALLINE ANISOTROPY ENERGY

Because of the relativistic effect of spin-orbit coupling the
electronic energy Ed of a magnet with collinear magnetiza-
tion is different for different directions of the magnetization
�superscript d� in the crystal, it is lowest for the magnetiza-
tion in the easy �Ee� directions and largest for the magneti-
zation in the hard �Eh� directions. We define the magneto-
crystalline anisotropy energy Emca as Emca=Eh−Ee. For

many systems, especially for those with reduced symmetry,
Eh and Ee, and hence Emca can be calculated highly accu-
rately within the framework of the ab initio spin-density-
functional electron theory, either in a fully relativistic version
or on the level of Pauli-Kohn-Sham equations in which the
spin-orbit coupling term is incorporated. We do not want to
assess critically the accuracy of such calculations, but we
want to comment on the physical interpretation of the results
which may be obtained by them.

The central quantity of the spin-density functional theory
is the spin-density matrix �

=
�r� from which the electron den-

sity n�r� can be obtained via n�r�=Tr�
=
�r�. The spin-density

matrix is calculated from the single-electron spinor fields
�n�r� with the components �n,i�r�, i=1,2,

�ij�r� = �
n

fn�n,i�r��n,j
� �r� , �1�

with the Fermi-Dirac occupation numbers fn. The �n�r� are
determined from the Pauli-Kohn-Sham equations

�−
�2

2m
�I= + H= SO + W= eff��n = �n�n, �2�

where I= is the unity matrix, �n denotes the single-electron
energies, H= SO is the spin-orbit coupling operator, and W= eff
represents the effective potential matrix

W= eff = �Ve-n + VH�I= + W= xc. �3�

In the Eq. �3� Ve-n is the Coulomb interaction energy between
the electrons and the nuclei with charge Z�e at position R�

Ve-n = �
�

Z�e2

�r − R��
, �4�

VH is the Hartree potential

VH =
�EH

�n�r�
= e2� n�r��

�r − r��
d3r�, �5�

and W= xc is the exchange-correlation matrix

W= xc =
�Exc

��
=
�r�

, �6�

with the Hartree energy EH and the exchange-correlation en-
ergy Exc. In the present Brief Report we do not consider
spin-dependent external potentials.
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Starting point for our considerations are the two equiva-
lent expressions for the electronic energy of the spin-density
functional electron theory. The first one is

E = T + EH + Exc + Ee-n. �7�

Here T is the kinetic energy,

T = �
n

fn� �n
��r��−

�2

2m
���n�r�d3r , �8�

and Ee-n is given by

Ee-n =� n�r�Ve-n�r�d3r . �9�

The second form is

E = �
n

fn�n + EH + Exc + Ee-n −� �
=
�r�W= effd

3r . �10�

One question of interest is whether it is possible to subdivide
in a physically meaningful manner the total magnetocrystal-
line anisotropy energy into local contributions from various
regions of real space, e.g., into atom-resolved contributions
for the case of multicomponent compounds. At least formally
this can be achieved1 when using Eq. �7� for the total energy,
because all terms are real-space integrals which can be sub-
divided into integrals over individual volume elements.
�Please note, however, that there is some ambiguity in this
procedure because the results depend on the choice of the
sizes and forms of these individual volume elements.� Prob-
lems arise when starting from the total energy expression
�10� because here the first term, the band-structure energy
�nfn�n, is not given by an integral in real space. In the lit-
erature it has been attempted to represent the magnetocrys-
talline anisotropy energy using the magnetic force theorem
by the difference between the band-structure energies for the
two magnetization directions h and e and by introducing the
atom-resolved densities of states for a subdivision of the
band-structure energy into atom-resolved contributions. We
want to show that this is not possible without a serious am-
biguity.

The quantities Eh and Ee are in principle determined by
two self-consistent spin-density functional calculations for
the two magnetization directions h and e. Usually, however,
the computational effort can be reduced by using the mag-
netic force theorem5,6 which provides good results by esti-
mating the differences of total energies subtracting the band
energies. When using the magnetic force theorem, a self-
consistent calculation is performed just for one direction, say
e, yielding the single-electron energies and the occupation
numbers fn

e and the self-consistent spin-density matrix �
=

e.
Then the rigidly rotated �

=

e �rotation matrix R� is used as the
input spin-density matrix �

= in
h =R−1�

=

eR for the one-shot calcu-
lation with magnetization in the direction h. It is assumed
that �

= in
h is a good approximation for the spin-density �

=

h

which would be calculated self-consistently for the magneti-
zation direction h. With the input effective potential matrix
W= eff��= in

h 	 the Kohn-Sham equations are solved just once,
yielding the non-self-consistent �nsc� energies �n

h,nsc, the cor-

responding occupation numbers fn
h,nsc and a non-self-

consistent density matrix �
=

h,nsc which differs from �
=

h by ��
=

=�
=

h−�
=

h,nsc. The magnetic force theorem then tells that Emca

can be approximated by

Emca = �
n

fn
h,nsc�n

h,nsc − �
n

fn
e�n

e + O���
=

2�

= �
−	

�F
h,nsc

zh,nsc�
�
d
 − �
−	

�F
e

ze�
�
d
 + O���
=

2� ,

�11�

where �F
e and �F

h,nsc denote the Fermi energies and ze�
� and
zh,nsc�
� are the densities of states for the orientation e and h,
respectively.

The basic idea is that the densities of states zd�
� �d=e or
h, nsc� can be subdivided into atom-resolved quantities,

zd�
� = �
i

zi
d�
� , �12�

where the index i labels the various atoms, for instance, the
Fe and Pt atom in the L10 compound FePt. Inserting Eq. �12�
into Eq. �11� yields �omitting the superscript nsc�

Emca = �
i

Emca,i, �13�

with

Emca,i = �
−	

�F
h

zi
h�
�
d
 − �

−	

�F
e

zi
e�
�
d
 . �14�

When performing a partial integration of Eq. �14� and as-
suming that the densities of states are approximately constant

in the range ��F
h −�F

e � around �F=
�F

h+�F
e

2 we obtain

Emca,i = Fi
e��F� − Fi

h��F� + �F�Ni, �15�

with

Fi
d��F� = �

−	

�F

d
��
−	


�
d
�zi

d�
�� , �16�

and

�Ni = �
−	

�F
h

d
zi
h�
� − �

−	

�F
e

d
zi
e�
� . �17�

The quantity �Ni denotes the change of the number of elec-
trons at the atom i induced by the change of the magnetiza-
tion direction from the easy to the hard direction.

The quantities Fi
d��F� have the important property that

they are invariant against a rigid shift of all energies. First,
the integral

z̃i
d�
�� = �

−	


�
d
�zi

d�
�� ,

is invariant because the lower edges of zi
d�
�� and the energy


� shift in the same manner. Second, the integral
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Fi
d��F� = �

−	

�F

d
�z̃i
d�
�� , �18�

is also invariant, because �F exhibits the same shift as the

lower band edges. This is due to the fact that �F=
�F

h+�F
e

2 and
that �F

d are determined via

Nel = �
−	

�F
d

d
zi
d�
� , �19�

with the total number Nel of occupied electronic states which
is the same for the two directions h and e of the magnetiza-
tion. Unfortunately, however, the last term in Eq. �15� is not
invariant because the invariant quantity �Ni is multiplied by
the noninvariant quantity �F. In the literature it has been
suggested7 to consider the Emca,i as atom-resolved contribu-
tions to the magnetic anisotropy energy, but in fact these
quantities suffer from the ambiguity introduced by the de-
pendence of �F�Ni on the arbitrary choice of the energy
zero. �Note that because of charge conservation the total
magnetocrystalline anisotropy energy calculated by applying
the magnetic force theorem is independent of the choice of
energy zero.� On the other hand it has been suggested8,9 to
consider the quantities Fi

e��F�−Fi
h��F� as atom-resolved con-

tributions. As discussed above, these differences indeed do
not depend on the choice of energy zero. However, they do
not have a simple physical meaning because they neglect the
unavoidable electron transfer �Ni. Altogether, it therefore
must be concluded that it is not possible to define physically
meaningful atomic contributions to the magnetic anisotropy
energy when starting from the total energy expression �10�.
As an example, we have calculated by means of the LMTO-
ASA bandstructure method,10 the charge transfer between the
Fe atom and the Pt atom in the L10 compound FePt when
changing the direction of the magnetization from the easy to
the hard direction. The charge in the two atomic spheres
thereby changes by �NFe=−�NPt=0.0004 electrons. This,
however, does not say anything about the relative importance
of the term �F�Ni in the Eq. �15� because due to the com-
plete arbitrariness in the choice of energy zero the averaged
Fermi energy �F can take any value.

III. BOND-RESOLVED CONTRIBUTIONS-ON KITTEL’S
INTERPRETATION OF THE MANGNETOCRYSTALLINE

ANISOTROPY ENERGY

In his book, “Introduction to Solid State Physics” Kittel11

has given an interpretation of the physical origin of the mag-
netocrystalline anisotropy energy which is illustrated in Fig.
1. The upper part of this figure shows a sketch of a system
with the magnetization oriented in the easy direction. In this
situation those electronic orbitals are occupied which exhibit
an optimum overlap and hence lead to an optimum covalent
bond energy. The lower part of the figure shows the situation
with the magnetization in the hard direction, thereby assum-
ing for simplicity that the spin-orbit coupling is extremely
large. Then the spin-orbit coupling enforces the occupation
of electronic orbitals which do not exhibit an optimum over-
lap and hence belong to a lower covalent bond energy. Ob-

viously, in Kittel’s model the magnetocrystalline anisotropy
energy is related to the fact that in a system with spin-orbit
coupling the covalent bond energy depends on the orienta-
tion of the magnetization in the crystal. In the following we
outline a method which is able to determine this anisotropy
of the covalent bond energy and which therefore provides a
tool to test Kittel’s interpretation of the magnetocrystalline
anisotropy energy.

In the following, we consider the cohesive energy Ec, de-
fined by

Ec = E + Ecc − Efree atoms, �20�

where E is the electronic energy �Eqs. �7� and �10�	, Ecc
represents the interaction energy between the nuclei and
Efree atoms denotes the total energy of atoms before being con-
densed to the crystal. Furthermore, we expand the Bloch
functions �n in a set of well-localized nonorthogonal orbit-
als �i�,

�n = �
i�

cn
i��i�, �21�

where � describes the angular and magnetic atom quantum
numbers l and m and the index i labels the various atoms. As
shown in Refs. 12 and 13 �and in references therein�, the
cohesive energy Ec then may be represented by six terms, all
of them having a well-defined physical meaning. Among
these terms is the covalent bond energy

Ecov = �
i�j�

i�j

Ecov,i�j�, �22�

with

Ecov,i�j� = �
n

fncn
i��cn

j����Hj�i� − Sj�i��̄ j�i�	 , �23�

�̄ j�i� = 1
2 �Hi�i� + Hj�j�� , �24�

and the overlap and Hamiltonian matrices Sj�i� and Hj�i�.
The covalent bond energy of an atom i is then given by the
sum over all bond strengths to all surrounding atoms j

FIG. 1. A schematic visualization of Kittel’s interpretation of the
magnetocrystalline anisotropy energy �see text�.
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Ecov,i = �
�,j�

Ecov,i�j�. �25�

Ecov,i�j� can be further subdivided into energy-resolved con-
tributions,

Ecov,i�j��E� = �
n

��E − �n�fncn
i��cn

j����Hj�i� − Sj�i��̄ j�,i�	 .

�26�

All these quantities, Ecov, Ecov,i�j�, Ecov,i�j��E�, and Ecov,i
have the attractive property that they do not depend on the
choice of the energy zero. Among the six contributions to the
cohesive energy, Ecov is the only one which involves matrix
elements between orbitals on different atoms, and therefore it
clearly represents the contribution of the interatomic bond-
ing. According to Kittel’s model the dependence of Ecov on
the orientation of the magnetization in the crystal should
represent the major reason for the magnetocrystalline aniso-
tropy energy, whereas the dependence of the other five terms
should be of minor importance. To test Kittel’s model one
could, e.g., consider the L10 compound FePt and calculate
both the magnetocrystalline anisotropy energy Emca=Eh−Ee

�by use of Eqs. �7� and �10�� and the anisotropy of the cova-
lent bond energy �Ecov=Ecov

h −Ecov
e for various values of the

c/a ratio, to see whether �Ecov represents a major contribu-
tion to Emca and whether the trend in Emca�c /a� as determined
in Ref. 14 is similar to the trend in �Ecov�c /a�.

To calculate Ecov, a set of fixed atom-localized orbitals has
to be used which do not depend on the orientation of the
magnetization. In the framework of the tight-binding linear-
muffin-tin-orbital method �TB-LMTO�,10 e.g., this is not the
case because there the basis orbitals are optimized for each
configuration of the system, i.e., the orbitals are different for

different orientations of magnetization. Because the minimal
basis set of the TB-LMTO represents a noncomplete and
nonorthogonal basis set, the use of two different sets of basis
functions may spoil the results for �Ecov, and this may be-
come numerically relevant in view of the fact that the values
of Emca and �Ecov are very small. We also want to warn
against the use of the magnetic force theorem for the calcu-
lation of �Ecov where one would perform a self-consistent
calculation of Ecov for, say, the easy direction and then make
a one-shot calculation of Ecov for the hard direction which
would involve the basis functions optimized for the easy
direction. Then the demand to use the same basis set for the
two magnetization directions is fulfilled. But the magnetic
force theorem is designed to yield an optimum estimate for
the total energy, whereas in general it does not lead to opti-
mized expansion coefficients ci� which, however, are re-
quired in Eqs. �23� and �26�. Instead of starting from the very
beginning with a band-structure method based on atom-
localized orbitals one could also use a method with delocal-
ized basis functions �such as the plane waves of a pseudopo-
tential calculation� and project the so-obtained Bloch
functions on a set of fixed atom-localized functions.12,13 Al-
together, we hope that our Brief Report will stimulate other
groups working with appropriate band-structure techniques
�we personally do not have codes with the above-described
properties� to test Kittel’s interpretation of the magnetocrys-
talline anisotropy energy with the tool �Ecov suggested in
this Brief Report.
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